State the information for the given polynomials. Then, provide a sketch of the function.

1)
$$P_1(x) = (x-2)(x+5)^2$$


y-intercept: _____

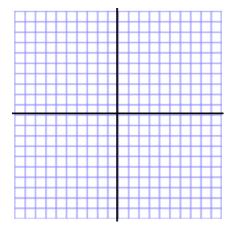
x-intercept(s):

Degree: _____ Bounce Points: _____

End Behavior/Orientation:

Number Line:

3)
$$P_3(x) = -2(x+3)^2(x+1)(x-1)(x-5)$$


y-intercept: _____

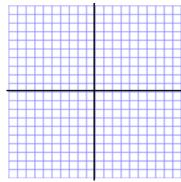
x-intercept(s):

Degree: _____ Bounce Points: _____

End Behavior/Orientation:

Number Line:

2)
$$P_2(x) = 2(x-2)(x+2)(x-3)$$


y-intercept: _____

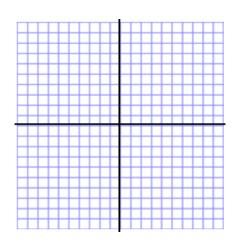
x-intercept(s):

Degree: _____ Bounce Points: _____

End Behavior/Orientation:

Number Line:

4)
$$P_4(x) = -0.1x(x+4)^3$$


y-intercept: _____

x-intercept(s):

Degree: _____ Bounce Points: ____

End Behavior/Orientation:

Number Line:

5)
$$P_5(x) = x^4 - 9x^2$$

y-intercept: _____

x-intercept(s):

Degree: _____

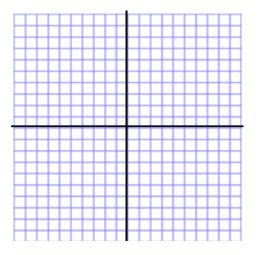
Bounce Points:

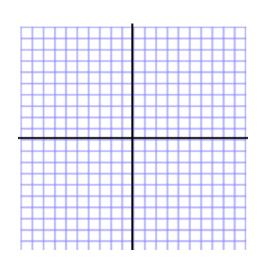
End Behavior/Orientation:

Number Line:

6)
$$P_6(x) = 0.2x(x+1)(x-3)(x+4)$$

y-intercept: _____

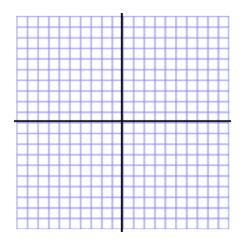

x-intercept(s):

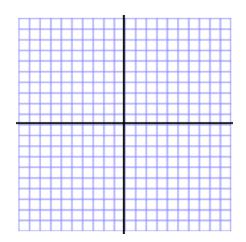

Degree: _____

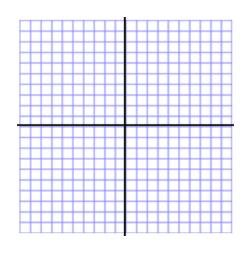
Bounce Points:

End Behavior/Orientation:

Number Line:




7) Without using a calculator, sketch rough graphs of the following functions.


a)
$$P(x) = -x(x+1)(x-3)$$

b)
$$P(x) = (x-1)^2(x+2)(x-4)$$
 c) $P(x) = (x+2)^3(x-4)$

c)
$$P(x) = (x+2)^3(x-4)$$

