	A 1	1		
Honors	Al	ge	bra	11

	VEY	
log and to Name	the following of the	s ortz adinozat

LT 8-1: Characteristics of Polyn	omials	Day 1	
----------------------------------	--------	-------	--

Period	
CITOU	

Using the characteristics that we discussed in class today, fill in the blanks.

- 1) An ____ 0 dd degree polynomial must have at least one real zero.
- 2) A polynomial function is written in _______ form ______ if its terms are written in _______ descending order of exponents from left to right.
- 3) The Leading Coefficient is the number in front of the term with the highest exponent in the polynomial.
- 4) A monomial is a polynomial with one term, a has two terms, and a has three terms.
- 5) It is possible for an ______ degree polynomial to have no real zeros.
- 6) The leading term test is used to determine the end behavior of the graph of a polynomial function.

Write each polynomial in standard form and state the degree, type, leading coefficient, and the end behavior. The first example has been done for you.

	Standard Form	Degree	Classify by Degree	Classify by Number of Terms	LC	End Behavior
Example: $y = 7 - 3x$	y = -3x + 7	1	Linear	Binomial	-3	As $x \to -\infty$, $y \to \infty$ As $x \to \infty$, $y \to -\infty$
7) $f(x) = 2x - x^3 + 8$	$t(x) = -x_3 + 5 \times + 8$	3	Cubic	Trinomial	-1	As $x \to \infty$, $f(x) \to \infty$ As $x \to \infty$, $f(x) \to -\infty$
8) $y = 3x^2 + x^3 - (x^3 + x^2)$	y=2x2	2	Quadratiz	Marania	2	As x+-10, y+ 00 As x+10, y+ 00
9) $y = (2x)^3 + 3x - 1$	y=8x3+3x-1	3	Cubic	Trinumial	8	As x + - 10, y + - 20 As x + 20, y + 20
10) $f(x) = (x+2)^2 + 3$ $2 \times 2 + 4 \times 4 + 3$	f(x)=x2+4x+7	a	Quadratic	Trinomial	1	As x + - 00, f(x) + 00 As x + 00, f(x) + 00
11) $y = (2 + x)(2 - x) - 4$	y = -x2	2	Quadrahi	Monumial	z-1	As x + - 20, y + - 20 As x + 20, y + - 20
12) $f(x) = 3(x+1)^2 - 3x^2$ = $3(x^2 + 2x + 1) - 3x^2$	f(x)=6x+3	(+ =	Linear	Binumras	6	As $x o -\infty$, $f(x) o -\infty$ As $x o \infty$, $f(x) o \infty$
13) $g(x) = 2x - 2(x - 3)$ $= 2x - 2x + 6$	9(x)=6	0	Constant	Monamial	6	As x + - 00, g(x) + 6 As x + 20, g(x) + 6

Describe the end behavior of the graph of the polynomial function without graphing.

14)
$$y = 4x - 2 + 5x^{5}$$
 LT

15) $y = -5x^{3} + 2x$

16) $y = -2x - 12x^{6} + 5$

As $x \to -\infty$, $y \to -\infty$

and as $x \to \infty$, $y \to -\infty$

17) $y = 6 - 2x + 6x^{2} - 12x^{9}$ LT

As $x \to -\infty$, $y \to -\infty$

and as $x \to \infty$, $y \to -\infty$

18) $y = 1 - x^{6} - 1 + 2x^{6} - 12x^{9}$

As $x \to -\infty$, $y \to -\infty$

and as $x \to \infty$, $y \to -\infty$

and as $x \to \infty$, $y \to -\infty$

and as $x \to \infty$, $y \to -\infty$

and as $x \to \infty$, $y \to -\infty$

and as $x \to \infty$, $y \to -\infty$

and as $x \to \infty$, $y \to -\infty$

and as $x \to \infty$, $y \to -\infty$

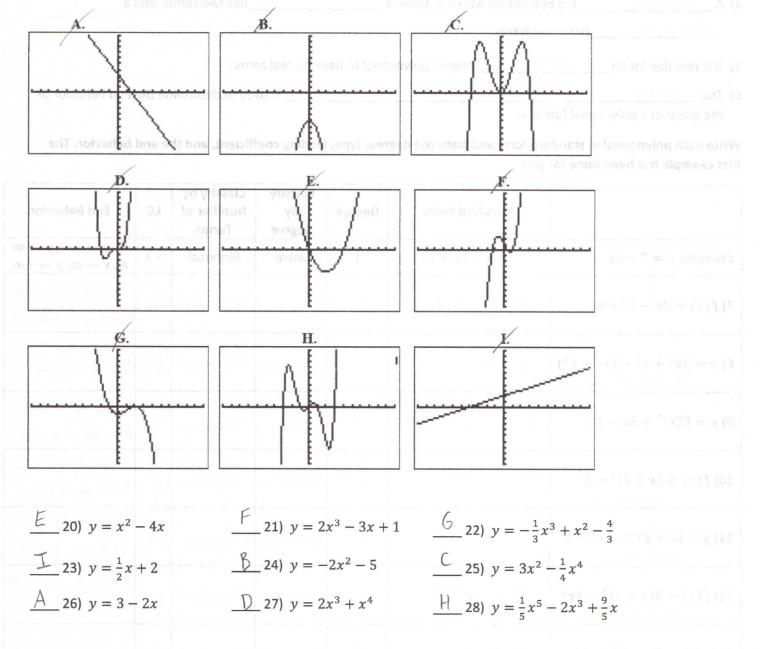
and as $x \to \infty$, $y \to -\infty$

and as $x \to \infty$, $y \to -\infty$

and as $x \to \infty$, $y \to -\infty$

and as $x \to \infty$, $y \to -\infty$

and as $x \to \infty$, $y \to -\infty$


and as $x \to \infty$, $y \to -\infty$

and as $x \to \infty$, $y \to -\infty$

and as $x \to \infty$, $y \to -\infty$

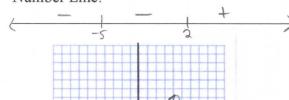
and as $x \to \infty$, $y \to -\infty$

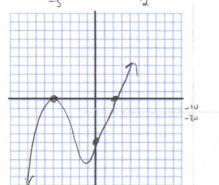
Match the polynomial function with its graph without using a graphing calculator.

LT 8-1: Characteristics of Polynomials Day 2

State the information for the given polynomials. Then, provide a sketch of the function.

1)
$$P_1(x) = (x-2)(x+5)^2$$


y-intercept:
$$(0,-50)$$


x-intercept(s):
$$(-5,0)$$
, $(2,0)$

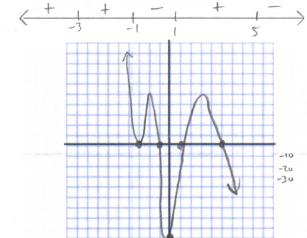
nce Points:
$$(-5,0)$$

As $x \to -\infty$, $P_1(x) \to -\infty$

End Behavior/Orientation:
$$As \times \rightarrow \infty$$
, $P_1(x) \rightarrow \infty$

3)
$$P_3(x) = -2(x+3)^2(x+1)(x-1)(x-5)$$
 LT= -2 x 5
y-intercept: $(0, -90)$

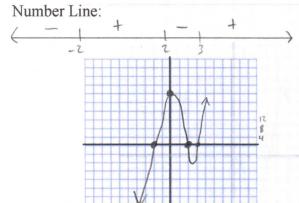
x-intercept(s):
$$(-3,0)(-1,0)(1,0)(5,0)$$


Degree:
$$5$$
 Bounce Points: $(-3,0)$

As $x \to -\infty$, $P_3(x) \to \infty$

As
$$x \rightarrow -\infty$$
 $P_3(x) \rightarrow \infty$

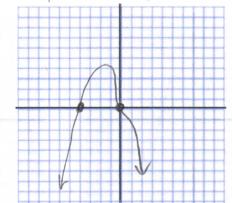
End Behavior/Orientation:
$$A_{\times \to \infty} / \rho_{3}(\times) \to \infty$$


Number Line:

2)
$$P_2(x) = 2(x-2)(x+2)(x-3)$$

x-intercept(s):
$$(-2,0)$$
 (2,0) (3,0)

End Behavior/Orientation: As
$$x \to \infty$$
, $\rho_{2}(x) \to \infty$


4)
$$P_4(x) = -0.1x(x+4)^3$$

x-intercept(s):
$$(-4,0)(0,0)$$

End Behavior/Orientation: As
$$\times \rightarrow \infty$$
 $\rho_{y}(x) \rightarrow -\infty$

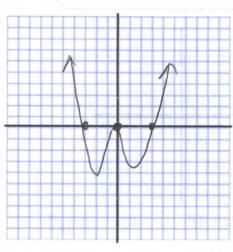
Number Line:

5)
$$P_5(x) = x^4 - 9x^2 = x^2(x^2 - 9) = x^2(x - 3)(x + 3)$$

y-intercept: $(0, 0)$ borned LT= x^4

x-intercept(s): (-3,0) (0,0) (13,0) (13,0) (13,0)

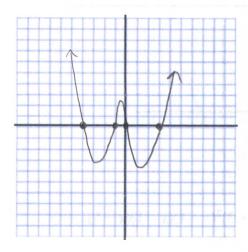
Degree: 4


Bounce Points: (0,0)

As x = - 20, Ps(x) = 100

End Behavior/Orientation: $A_3 \times \rightarrow \infty$ $P_5(x) \rightarrow \infty$

Number Line:


6)
$$P_6(x) = 0.2x(x+1)(x-3)(x+4)$$
 U1= 0.2 x 4 y-intercept: (0,0)

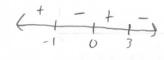
x-intercept(s): (-4, 0)(-1, 0)(0, 0)(3, 0)

Degree:

Bounce Points: NoneEnd Behavior/Orientation: $As \times 3 - \infty$, $P_{l_{0}}(x) \rightarrow \infty$

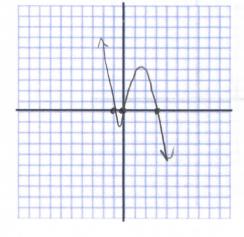
Number Line:

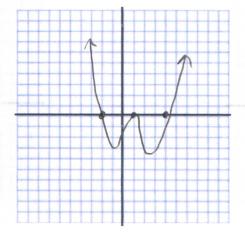
7) Without using a calculator, sketch rough graphs of the following functions. a) P(x) = -x(x+1)(x-3) b) $P(x) = (x-1)^2(x+2)(x-4)$ c) $P(x) = (x+2)^3(x-4)$

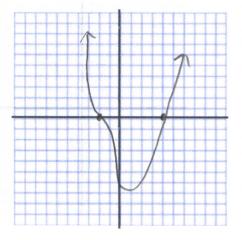

b)
$$P(x) = (x-1)^2(x+2)(x-4)$$

c)
$$P(x) = (x+2)^3(x-4)$$

Zeros: -1,0,3 ming someoff Zeros: -2, 1 mult. 2, 4 Lt: x4


LT: -X3 No bonce points Bonce point: (1,0)


No bounce points of boil



LT 8-1: Characteristics of Polynomials Day 3

Write the following polynomials in standard form:

1)
$$f(x) = x(x+3)^{2}$$

$$= \times (\times + 3)(\times + 3)$$

$$= \times (\times^{2} + 6 \times + 9)$$

$$f(x) = x^{3} + 6x^{2} + 9x$$

2)
$$g(x) = (x+1)(x+2)(x+3)$$

= $(x^2+3x+2)(x+3)$
= $x^3+3x^2+2x+3x^2+9x+6$
 $g(x) = x^3+6x^2+11x+6$

Write a polynomial function in standard form with the given zeros.

3)
$$x = -2, 0, 1$$

4)
$$x = 3$$
 multiplicity 2

$$f(x) = (x-3)^{2}$$

$$= (x-3)(x-3)$$

10) A rectangular box is

5)
$$x = -2,0$$
 multiplicity 3, 2

6)
$$x = -4, -3, 0, 3, 4$$

$$= \times (x^2 - 16)(x^2 - 9)$$

7) Write a polynomial equation for a graph that passes through the point (-1, 60) and has three x-intercepts: (-4, 0), (1, 0), and (3, 0).

$$f(x) = \alpha(x+4)(x-1)(x-3)$$

$$= \alpha(x^{2}+3x-4)(x-3)$$

$$= \alpha(x^{3}+3x^{2}-4x-3x^{2}-9x+12)$$

$$f(x) = \frac{5}{2}(x^{3}-13x+12)$$

$$f(x) = \frac{5}{2}x^{2} - \frac{65}{3}x+30$$

8) Write a polynomial equation for a graph that has three x-intercepts: (-5,0), (3,0) and (1,0) and it passes through the point (4,108).

$$f(x) = \alpha(x+5)(x-3)(x-1)$$

$$= \alpha(x^{2}+2x-15)(x-1)$$

$$= \alpha(x^{3}+3x^{2}-15x-x^{2}-2x+15)$$

$$f(x) = \alpha(x^{3}+x^{2}-17x+15)$$

$$f(x) = \alpha(x^{3}+x^{2}-16x+15)$$

$$f(x)$$

9) Write a polynomial equation for a graph that has x-intercepts at (-2,0) and (3,0), a bounce point at (-4,0) and passes through the point (5,25).

$$f(x) = \alpha (x+2)(x-3)(x+4)^{2}$$

$$= \alpha (x+2)(x-3)(x+4)(x+4)$$

$$= \alpha (x^{2}-x-6)(x^{2}+8x+16)$$

$$= \alpha (x^{4}-x^{3}-6x^{2}+8x^{3}-8x^{2}-48x+16x^{2}-16x-96)$$

$$f(x) = \alpha (x^{4}+7x^{3}+2x^{2}-64x-96)$$

$$f(s) = \alpha (s^{4}+7(s)^{3}+2(s)^{2}-64(s)-96) = 25$$

$$f(x) = \alpha (s^{4}+7(s)^{3}+2(s)^{2}-64(s)-96) = 25$$

$$f(x) = \frac{2s}{1134}(x^{4}+7x^{3}+3x^{2}-64x-96)$$

10) A rectangular box is 2x + 3 units long, 2x - 3 units wide, and 3x units high. Express its volume as a polynomial in standard form.

$$V = LWH$$

$$= (4x^{2} + 6x - 6x - 9)(3x)$$

$$= (4x^{3} - 9)(3x)$$

$$= (4x^{3} - 9)(3x)$$