Lesson Goals

By the end of this lesson, you should be able to:

- Find real and \square solutions of quadratic equations using the quadratic formula.
- Use the discriminant to determine the \square and \square of roots of a quadratic equation.

Words to Know

Fill in this table as you work through the lesson. You may also use the glossary to help you.

discriminant	the \square found in the quadratic formula, used to determine the number and type of solutions to a quadratic equation
quadratic formula	a \square for finding the solutions of a \square equation in standard form

Instruction

The Quadratic Formula

Lesson

Question

The Quadratic Formula

The quadratic formula is really useful when you need to solve a quadratic equation that you can't solve using the other methods that you already have.

The quadratic formula is a formula for finding the solutions of a quadratic equation in the form \square

$$
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

How to Use the Quadratic Formula

To solve a quadratic equation:

Step 1 Write equation in standard form: $0=a x^{2}+b x+c$

Step 2
Identify the values of \square
 , and \square

Step 3
 the values of a, b, and c into the quadratic formula

Step 4 Simplify the expression

Instruction

The Quadratic Formula

Example: Approximate the zeroes of $y=-16 x^{2}+32 x-10$. Round to the nearest hundredth. It's already in standard form.

Identify a, b, and c.

$$
a=-16, b=\square, c=\square
$$

$$
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

$$
x=\frac{-(32) \pm \sqrt{(32)^{2}-4(-16)(-10)}}{2(-16)}
$$

$$
x=\frac{-32 \pm \sqrt{1024-640}}{-32}
$$

$$
x=\frac{-32 \pm \sqrt{384}}{-32}
$$

$$
x=\frac{-32 \pm 19.59}{-32}
$$

$x=\frac{-32+19.59}{-32}$
$x=\frac{-32-19.59}{-32}$
$x \approx \frac{-12}{-32}$

$x \approx \frac{-52}{-32}$
\square

Edgenuity

Instruction

The Quadratic Formula

$x \approx 0.38$ and 1.61

The graph crosses the x-axis at two points

One real solution

$$
x=-1.5
$$

The graph touches the x-axis at one point

\square real solution

$$
x=? ?
$$

The parabola never touches the x-axis

The solutions are
therefore

Instruction

The Quadratic Formula

Quadratic Equations with No Real Solution

Example: Solve $-3 x^{2}-x=-6 x+4$.
Get the equation in the standard form.

$$
0=a x^{2}+b x+c
$$

$$
0=3 x^{2}-6 x+x+4
$$

Identify a, b, and c.

Use the quadratic formula to solve.

$$
\begin{aligned}
& x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} \\
& x=\frac{-(-5) \pm \sqrt{(-5)^{2}-4(3)(4)}}{2(3)} \\
& x=\frac{5 \pm \sqrt{25-48}}{6} \\
& x=\frac{5 \pm \sqrt{-23}}{6} \\
& x=\frac{5 \pm \sqrt{23} i}{6}
\end{aligned}
$$

This quadratic function has two roots, and they're \square
The two roots are $x=\frac{5+\sqrt{23} i}{6}$ and $x=\frac{5-\sqrt{23} i}{6}$.

Instruction

The Quadratic Formula

The Discriminant

The discriminant is the radicand found in the quadratic formula.

- $b^{2}-4 a c$

2 real solutions
- $b^{2}-4 a c$

1 real solution

- $b^{2}-4 a c$
 0

0 real solutions

Quadratic formula
$x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$

The Quadratic Formula

Instruction

How to Use the Discriminant

Example: Describe the zeroes of the function $y+7 x-1=9 x^{2}+3 x+5$.

Get the equation in the standard form.

$$
\begin{aligned}
& y=a x^{2}+b x+c \\
& y=9 x^{2}-4 x+6
\end{aligned}
$$

Identify a, b, and c.

$$
a=\square, b=-4, c=6
$$

Since we're not solving, we don't need the quadratic formula. All we need is:

$$
\begin{gathered}
b^{2}-4 a c \\
(-4)^{2}-4(9)(6) \\
16-216 \\
-200
\end{gathered}
$$

- Since we have a \square under the radical, we have an imaginary number.
- Our roots are going to be complex.
- There are \square real roots to this particular problem.

Summary \quad The Quadratic Formula

Lesson
 Question

How can a formula be used to solve a quadratic equation or to predict the nature of the solutions?

Answer:

Review: Key Concepts

The quadratic formula is
$x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$

$0=a x^{2}+b x+c$

- x-intercepts of $y=a x^{2}+b x+c$

The discriminant is

$$
b^{2}-4 a c
$$

- $b^{2}-4 a c>0$

- $b^{2}-4 a c=0$

1 real solution

- $b^{2}-4 a c<0$

Summary
 The Quadratic Formula

Review: Common Problem Types

To solve a quadratic equation using the quadratic formula:

1. Write the equation in \square form: $0=a x^{2}+b x+c$.
2. Identify the values of a, b, and c from the equation.
3. Substitute the values of a, b, and c into the quadratic \square
4. Simplify the expression for x.

To determine the nature of a quadratic's solutions:

1. Follow the same steps as above, but use the discriminant only.
2. Assess the sign to identify the \square and \square of solutions.

Summary

The Quadratic Formula

Use this space to write any questions or thoughts about this lesson.

