

Warm-Up The Quadratic Formula

Words to Know

Fill in this table as you work through the lesson. You may also use the glossary to help you.

discriminant	the found in the quadratic formula, used to determine the number and type of solutions to a quadratic equation
quadratic formula	a for finding the solutions of a equation in standard form

W 2K

Instruction

The Quadratic Formula

Lesson Question

Slide

The Quadratic Formula

The quadratic formula is really useful when you need to solve a quadratic equation that you can't solve using the other methods that you already have.

The quadratic formula is a formula for finding the solutions of a quadratic

Instruction

Slide 2

The Quadratic Formula

Example: Approximate the zeroes of $y = -16x^2 + 32x - 10$. Round to the nearest hundredth. It's already in standard form.

Identify a, b, and c.

$$a = -16, b =$$
, $c =$

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

$$x = \frac{-(32) \pm \sqrt{(32)^2 - 4(-16)(-10)}}{2(-16)}$$

$$x = \frac{-32 \pm \sqrt{1024 - 640}}{-32}$$

$$x = \frac{-32 \pm \sqrt{384}}{-32}$$

$$x = \frac{-32 \pm 19.59}{-32}$$

$$x = \frac{-32 + 19.59}{-32}$$

$$x = \frac{-32 - 19.59}{-32}$$

$$x \approx \frac{-12}{-32}$$

$$x \approx \frac{-52}{-32}$$

$$x \approx \boxed{\qquad}$$

$$x \approx \boxed{\qquad}$$

Instruction

The Quadratic Formula

Instruction

Slide

6

The Quadratic Formula

Quadratic Equations with No Real Solution

Example: Solve $-3x^2 - x = -6x + 4$.

Get the equation in the standard form.

$$0 = ax^{2} + bx + c$$

$$0 = 3x^{2} - 6x + x + 4$$

$$0 =$$

$$a =$$
, $b = -5, c = 4$

Identify *a*, *b*, and *c*.

Use the quadratic formula to solve.

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

$$x = \frac{-(-5) \pm \sqrt{(-5)^2 - 4(3)(4)}}{2(3)}$$

$$x = \frac{5 \pm \sqrt{25 - 48}}{6}$$

$$x = \frac{5 \pm \sqrt{25 - 48}}{6}$$

$$x = \frac{5 \pm \sqrt{-23}}{6}$$

$$x = \frac{5 \pm \sqrt{23}i}{6}$$
This quadratic function has two roots, and they're $\boxed{}$.
The two roots are $x = \frac{5 + \sqrt{23}i}{6}$ and $x = \frac{5 - \sqrt{23}i}{6}$.

Instruction

Slide

8

The Quadratic Formula

The **discriminant** is the radicand found in the quadratic formula.

• $b^2 - 4ac$ 0

2 real solutions

•
$$b^2 - 4ac \qquad 0$$

1 real solution

•
$$b^2 - 4ac$$
 0

0 real solutions

Quadratic formula

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

Instruction

Slide

8

The Quadratic Formula

How to Use the Discriminant

Example: Describe the zeroes of the function $y + 7x - 1 = 9x^2 + 3x + 5$.

Get the equation in the standard form.

$$y = ax^{2} + bx + c$$

 $y = 9x^{2} - 4x + 6$
 $a =$, $b = -4$, $c = 6$

Identify a, b, and c.

Since we're not solving, we don't need the quadratic formula. All we need is:

$$b^{2} - 4ac$$

$$(-4)^{2} - 4(9)(6)$$

$$16 - 216$$

$$-200$$
• Since we have a under the radical, we have an imaginary number.

• Our roots are going to be complex.

There are real

real roots to this particular problem.

mary	The Quadratic Fo	ormula	
Lesson Question	How can a formula be used to solve a quadratic equation or to predict the nature of the solutions?		
Answer:			
Review: Key	v Concepts		
	r Concepts ratic formula is	The discriminant is	
The quadr	eatic formula is $\pm \sqrt{b^2 - 4ac}$	The discriminant is b² – 4 ac	
The quadr	atic formula is		
The quadr $x = \frac{-b}{-b}$	$\frac{d}{dt} \frac{1}{2a} \frac{1}{2a}$	$b^2 - 4ac$	
The quad $x = \frac{-b}{-b}$	$\frac{\pm \sqrt{b^2 - 4ac}}{2a}$	$b^{2} - 4ac$ • $b^{2} - 4ac > 0$ [real solutions • $b^{2} - 4ac = 0$	
The quadr $x = \frac{-b}{-b}$ $\cdot \begin{bmatrix} \\ \\ \\ \\ 0 = ax^2 - b \end{bmatrix}$	$\frac{\pm \sqrt{b^2 - 4ac}}{2a}$	$b^{2} - 4ac$ • $b^{2} - 4ac > 0$ [real solutions • $b^{2} - 4ac = 0$ 1 real solution	
The quadr $x = \frac{-b}{-b}$ $\cdot \begin{bmatrix} \\ \\ \\ \\ 0 = ax^2 - b \end{bmatrix}$	$\frac{\pm \sqrt{b^2 - 4ac}}{2a}$	$b^{2} - 4ac$ • $b^{2} - 4ac > 0$ [real solutions • $b^{2} - 4ac = 0$	

Summary

The Quadratic Formula

 Review: Common Problem Types To solve a quadratic equation using the quadratic formula: Write the equation in form: 0 = ax² + bx + c. Identify the values of a, b, and c from the equation. Substitute the values of a, b, and c into the quadratic . Simplify the expression for x. 	Slide			
 Write the equation in form: 0 = ax² + bx + c. Identify the values of a, b, and c from the equation. Substitute the values of a, b, and c into the quadratic . 	2			
 2. Identify the values of <i>a</i>, <i>b</i>, and <i>c</i> from the equation. 3. Substitute the values of <i>a</i>, <i>b</i>, and <i>c</i> into the quadratic 	ΎΙ			
3. Substitute the values of a , b , and c into the quadratic				
4. Simplify the expression for x .				
To determine the nature of a quadratic's solutions:				
1. Follow the same steps as above, but use the discriminant only.				
2. Assess the sign to identify the and of solutions.				

Summary

The Quadratic Formula

Use this space to write any questions or thoughts about this lesson.